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FINITENESS CONDITIONS IN KRULL 
SUBRINGS OF A RING OF POLYNOMIALS 

BY 

BRONISLAW WAJNRYB 

ABSTRACT 

Let R be a Krull subring of a ring of polynomials k[x,. . . ,x.] over a field k. 
We prove that if R is generated by monomials over k then R is affine. We also 
construct an example of a non-afline Krull ring R, such that k[x, xy]C R C 
k[x,y] ,  and a non-Noetherian Krull ring S, such that k[x, xy, z]CSC 
k[x,y,z]. 

1. Introduction 

Let k be a fixed field. By a ring we shall mean an integral domain containing k. 

An attine ring is a ring finitely generated over k. By a minimal prime ideal of a 

ring R we shall mean a prime ideal of height 1. 

Let R be a Krull subring of a ring of polynomials k [ x l , "  . ,x ,] ,  and let K be 

the quotient field of R. Every element of R belongs to at most a finite number of 

minimal prime ideals of R. This finiteness condition has many implications but in 

general R is neither afline nor Noetherian. Hilbert asked in his 14-th problem 
whether R is attine, assuming that R = K A k [ x l , . . . ,  x,]? Zariski proved that R 
is afline if trdim~ K < 3 and Nagata found a counterexample with trdimk K = 4. If 

we allow xl," �9 ", x.  to be algebraically dependent then counterexamples exist for 

trdimk K = 3. Many affirmative results are known under special conditions ([9]). 

A slightly different question was asked by Heinzer in [7]: Let R0 be an atfine 
Krull ring with the quotient field K and let R be a Krull ring, such that 
R0 C R C K. Is R Noetherian? The answer is again yes if trdimkK < 3. An 

example of such a 3-dimensional non-Noetherian ring R is given in [4], but R is 

not contained in a ring of polynomials. 

In section 3 we give two new examples of non-finiteness in Krull subrings of a 

ring of polynomials. We construct a non-afline Krull ring R, such that k[x, xy] C 

R C k[x ,y] ,  and a non-Noetherian Krull ring S, such that k[x, xy, z] C S C 
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k[x, y, z]. The divisor class group of R and of S is equal to Z, the group of 

integers. In fact it could not be smaller because of the following result of Zaks 

([12]): If R is a Krull ring with the divisor class group torsion and if 

A C R CA[x]  then R is finitely generated over A. 

In section 2 we prove the following theorem. 

THEOREM. Let R be a Krull ring generated by some monomials in a ring o[ 
polynomials k[x l , . . . , x , ] .  Then R is affine. 

The ring R in the theorem is a semigroup ring. Such rings have been 

extensively investigated (e.g. [1],. [2], [3], [5], [6], [8], [11]). Anderson and 
Hochster were particularly interested in Krull rings generated by monomials. 

Anderson obtained many interesting results assuming that R is affine. Hochster 

proved that if R is Noetherian then it is attine and Cohen-Macauley. Our result 

shows that these assumptions are satisfied by every Krull ring generated by 

monomials. 

The author is grateful to Professor Zaks for many helpful discussions which 

contributed to this paper, and to the referee for suggesting a simplification of the 

proof of Lemma 1. 

2. Kruli rings generated by monomials 

In this section R is a Krull ring generated by some monomials in a ring of 
polynomials k[Xl,"  .,x,] over a field k. We want to prove the following 

THEOREM. The ring R is affine. 

Let us fix some notation. Since R is a Krull ring, the localization Rp of R at a 
minimal prime ideal p of R is a discrete valuation ring. We shall denote by vp the 

corresponding discrete valuation of the quotient field K of R. We shall denote 

by F the semigroup of monomials in R and by G the group of monomials 

generated by F. Then G is freely generated by algebraically independent 

monomials yl , '"  ", ym and K = k (y l , ' '  ",ym). The ring R is a semigroup ring, 

R = k[F]. 

LEMMA l. There exists a finite number of minimal prime ideals pl, '" ", p, of R, 

such that F ={g E G; vp,(g)_->0 for i = 1, . . . , r}.  

PROOF. Clearly F = {g E G; vp (g) -> 0 for all minimal prime ideals p of R }. 

For each y~, vp(y~)= 0 for all but finitely many p. Let {pl,"" ",p,} be the set of 

minimal prime ideals (necessarily finite) for which vpj (yi)~ 0 for some i. Then for 
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p~.{p~,.. . ,p,}, vp(g )=0  for all g E G .  Thus F = { g E G ;  vp,(g)=>0 for i =  

1 , . . . , r} .  [] 

LEMMA 2. Let F be a [ree abelian group of rank m. Let V l , ' " , v ,  be 
homomorphisms o[ F into the integers and let Fo = {g ~ F; v, (g) >= 0 [or i = 
1 , . . . ,  r}. Then Fo is a finitely generated semigroup. 

PROOF. We can regard F as a set of points with integer coordinates in a real 

linear space V = R m. Let o denote the origin of V. We can extend v~ to a linear 

functional on V represented in the standard basis by a vector with integer 

coefficients. Let Hi ={x ~ V; v~ (x ) ___> 0} for i = 1 , . . . , r .  Then the cone C = 

I"1~=~ ~ is a convex hull of a finite number of hairlines L~,. �9 Ls originating at o, 

and each L, contains a point g~ E F (see the remark below). Every point of C is a 

positive combination of g~'s. Let 

N = { x  C F A C ;  x = ~ a'g" O<=a'<=l f~ i = X " ' " s }  

Then N is a finite set and it generates the semigroup F0 = F A C. Indeed every 

point in F0 can be written as (~=1 n~g~ + (something in N)), where n~ is a 

non-negative integer for i = 1,. �9 -, s. Therefore F0 is finitely generated. [] 

REMARK. The set of hairlines L~,. �9 Ls considered in the above proof can be 

obtained in the following way. If C contains a whole line we shall first divide it 

into smaller cones by using the coordinate hyperplanes. We can intersect each 

small cone with a suitable hyperplane in order to get a bounded intersection. The 

intersection is a convex bounded polyhedron which is equal to the convex hull of 

its vertices. Each vertex lies on a halfline through o, which is defined by 

equations with integer coefficients, hence contains a point of F. Clearly C is the 

convex hull of all these hairlines. 

PROOF OF THE TREOREM. The ring R is generated by the monomials in F. By 

Lemmas 1 and 2, F is finitely generated. Therefore R is finitely generated. [] 

3. Non-atline Kruli subrings of k[x, y] and k[x, y, z] 

Let k be a field and let k[x, y] denote a ring of polynomials over k. Let 

al, a2,. �9 �9 be an infinite sequence of elements of k. Let go, g l , ' "  �9 be a sequence 

of polynomials defined by induction as follows: go = x, gi = ygi-1 q- ai for i --_> 1. 

Let R = k[g0, g l , . . . ] .  

We shall prove that R is a Krull ring for a suitable choice of the field k and of 

the sequence (a,), but first we shall prove some general facts. 
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LEMMA 3. R is freely generated by 1,gl, g 2 , ' "  as a k[x]-module. 

PROOF. Clearly 1, gl, g2," �9 �9 are independent over k[x]. It is enough to show 

that gn �9 belongs to the module for every n, m. We shall prove by induction on 

m that for every n => m _>- 1 we have 

gng, n = x(gn+m -- an+,,,) + -~ 
izO 

For m = 1 

a,,,-ig,+i - ~ l  a,+igr,-i. 
i = 1  

gngl = g. (yx + a,) = xyg. + alg~ = x(g.+l - an+l)+ alga. 

Assume that the formula is true for m and let n = m + 1. 

gngm+l = g. (ygm + as+l) 

i=O i~1 

= x ( g . + s + l  - a . + m + l )  - an+m (gl - -  al) 

dl- ~ l  am- i (gn+i+l - -  an+i+l) - ~ 1  an+i(gm+l-i  -- am+l- i )  + am+lgn. 
i~O i=l 

Since Y.~%o' a~_~ (gn+~+l- a.+~+l)= ~ am+l-~ (gn+~- a~+i) we get finally 
i = 1  

g.gm+l:x(gn+m+l--an+m+l)+ ~ ara+l-ign+i--~ an+~gm+l-i. [] 
i=O i~1 

It follows from Lemma 3 that every element of R can be written in a unique 

way as 2 E ( x ) g , + c ,  c E k .  The set M = { f E R ; f = 2 E ( x ) g , }  is a maximal 

ideal of R. We want R to be a Krull ring. In particular R should satisfy the 

following condition 

(*) For every f E R \{0} there exists n > 0, such that fy n ~ R. 

Since yg, belongs to R for every i and y is not in R, the condition (*) is 

equivalent to the existence of n, such that fy" E R \ M. Suppose that R satisfies 

(*). We can define a function v( / )  = max{n ;/yn E R} for all non-zero elements 

of R. Then f y V ~ ) E R \ M .  Clearly v ( f g ) = v ( f ) + v ( g )  and o f f + g )  > 

min{v (f), v (g)}, hence v can be extended to a discrete valuation of k (x, y)  with 

the valuation ring V. Every polynomial f in k Ix, y] can be written as f = 
g + A ( y ) ,  where g belongs to R and A ( y )  is in k[y] .  Since v ( A ( y ) ) =  

v (y)deg A (y) and v (y) < 0 we have R = V N k [x, y ]. Therefore R is a Krull 

ring. Since dim R = 2 and the minimal prime ideal M is maximal R is not afline. 
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It remains to choose a sequence (at) in such a way that the corresponding ring 

R satisfies (*). The choice is not arbitrary. If we choose for example at = i, and 

let f = g2 - 2gl + go then f y ,  E! M for all n. 

EXAMPLE 1. Let k = Q (z) be a purely transcendental extension of the field 

of rational numbers. Let a.  =IIT=~(z- i ) .  Define polynomials g o ( x , y ) = x ,  

g n ( x , y ) = y g . _ ~ + a , = x y " + Z ' , ~ a ~ y  "-t for n = l .  Let R = k [ g o ,  g l , . . . ] .  We 

shall prove that R is a non-affine Krull ring. 

We shall keep the notation introduced in this section. We have to prove that R 

satisfies (*). Suppose that there exists f = E~=o ET=o b (i, j )xJg ,  b (i, j )  E k, such 

tha t /y"  E M for every r. After multiplication by an element of k we may assume 

that f E Q [ x , y , z ]  and that not all of b( i , j )  are divisible by ( z - n - 2 )  in 

Q [z ]. Let S = Q [x, y, z ] O R and let P = M n S. By our assumptions fy '  E P 

for every r. We shall prove that this cannot happen. 

By the definition of R and S every element of Q Ix, y, z ] can be written in the 

unique way in a form f = g + E d~y TM where g E P and d~ E Q [z ], w => 0. We 

shall call do the constant term o f / .  

Let [ = g + E dwy" and f '  = g '  + E d ' y "  be two polynomials with g, g '  E P. We 

shall write dw = d "  if d ,  - d "  is divisible by (z - n - 2) and we shall write [ ~ [ '  

if dw - d "  for every w. In particular a~ = 0 if and only if i > n + 1. We shall prove 

by induction that 

(1) y'gt = g~+, - ~ ,  a,+,_.y" where t > u = t + i - n - 1, u => 0. 

In particular g,+~y' =- g,+l+, ---- 0. 

(2) x~y" - ~] dwy" for some d ,  ~ Q[z] ,  w>->_u- (n+l ) j ,  w>->_O. 

Statement (1) is true for t = O. Suppose that it is true for t -  1. Then y'gi -- 

y(gt+,-I - y. a , + t - . - l y  u )  =-- gt+, - at+, - Y~ a,+t-u-ly ,+1, t - 1 > u >= t + i - n - 2, u >= 

0. If t + i _-__ n + 1 then the lowest value of u is 0 and - at+, appears in formula 

(1). If t + i > n + 1 then at+, E P and we get again formula (1). Statement (2) is 
- -  ~ n + l  true for j = 1 because xy" = gu - E aty"-~ = g. ,.,~ffi~ a~y"-'. Suppose that it is 

true for j - 1 .  Then x i y  u =--Eddy  w =Ecl.(Y-cw, vy ~) for some dw, c,,,v and 

v _ _ _ > w - n - l , w  = u - ( n  + l ) ( j - 1 ) , v  = 0 .  [] 

Consider our function f. Let e = max{(n + 1)q + 1 ) -  i; b( i , j )  ~ 0}. Since i =< n 

there is a unique b(r, s)  ~ O, such that e = (n + 1)(s + 1) - r. We shall prove that 

y ' f  = E b ( i , j ) x Jy ' g , ~  P. By (1) and (2) 
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xJyeg~ =- xJ (gi+, - ~, a~+~_.y ~) 

= ~,a,+~_.(~dw,.y ~) f o r s o m e d  .... 

u > = e + i - n - 1 ,  w > = u - ( n + l ) j > = e + i - ( n + l ) ( j + l )  
= ( n  + l ) ( s  + l ) - r - ( n  + l ) ( j + l ) + i _ - > 0 .  

By our assumptions the polynomial E dw,,y ~ may have a constant term only if 

i =r, / =s, u =e + i - n - l  =(n + l)s. We have 

xSY ~*l~s = g .+ l -  a~y n§ �9 
i = !  

Since g .+ly ' -=0 we have 

for some dw. Therefore 

w > O  

y~f = ~ b ( i , j ) x i y ' g , -  _b(r,s)(_a.+~)~+l+ ~' doy ~ 
v > O  

for some dr. Hence y ef~ p. This contradiction shows that there is no "bad"  

element f of R and the ring R satisfies condition (*). 

REMARK. It follows from a theorem of Heinzer in [7] that R is Noetherian. 

One can prove in particular that the ideal M is generated by go and gl. 

EXAMPLE 2. Consider the ring S = R n Q[x, y, z] defined in Example 1. 

Clearly S is a Krull ring. Every element of S can be written in the form 

E F~ (x, z )gi + C(z). The set P = M n S = {f; f = E F~ (x, z)g~ } is a minimal prime 

ideal of S. We shall prove that no P-primary ideal is finitely generated. 
(This strongly non-Noetherian property is also satisfied by a certain minimal 

prime ideal in an example in [4].) 

Since P is a minimal prime ideal of a Krull ring, the primary ideals belonging 

to P are exactly the symbolic powers Pt'~) of P. The discrete valuation belonging 

to P is such that Pt" )={ f~S; f ym- lEP} .  We shall prove first that 

g ,~  (go, g l , ' "  ", gin) for r > m. Consider an element 
rn n 

i ~ 0  t = 0  
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which belongs to the ideal (go, g~," �9 ", g,,). By the product formula of Lemma 3, 

gjg~ is a combination of g,'s with coefficients belonging to the ideal (z - 1, x) of 

Q [ x , z ] .  In particular the coefficient G , ( x , z )  belongs to ( z -  1 ,x)  for t > m. 

Therefore  g ,~  (go, g , ' "  ", g,.) for r > m. 

We shall prove now that there exist do, d l , ' . . , d , . E Q [ z ] ,  such that 

y "  (g, - E?=o d,g~ ) E P. Then g, - E,~o d~i E P~"+~ hence pc., �9 ~ ~ (go , "  ", g,.) for 

every m. If P") E (go ,"  ", g,.) for some m and s, then either P"~ E (go ,"  ", g.-~) or 

P C " + ~ E ( g o , . . . , g , . ) .  Therefore  the existence of do, d ~ , " ' , d r ,  as above will 

imply that no P-primary ideal is contained in a finitely generated ideal contained 

in P. 

It is easy to prove by induction that y'g~ = g~+,.-E,.~' a , . , _ y L  Therefore 

y" (g , -E?=od ,g~)E P if and only if the d,'s satisfy the following system of 

equations: 

a,,., jd, = a . . . .  j for j = O, 1 , . . . ,  m - 1. 
i=O 

The following lemma implies the existcnce of such do, d~ , . . . ,  d,,. 

For r > s >= m there exist  po lynomia l s  do, d ~ , . . . ,  dr, E Q[z] ,  which  LEMMA 4. 

satisfy 

(3) Lj : ~ a,+,_fl, = a,+,._j 
i = 0  

f o r j  = 0 ,  1," �9 - ,m - 1 .  

PROOF. We shall prove the lemma by induction on m. For m = 1 we have 

a,do+ a,+~d~ = a . . . .  Since all the coefficients are divisible by a,, we can find a 

polynomial solution. Suppose that the lemma is true for m -  1. We have 

a, = II~'_l (z - i). Therefore  a,  - (z  - i )a ._ l  = (i - n)a,_~. Consider a new sys- 

tem of equations R1 = Lj - ( z  - s + j ) L j . ~ ,  j = 0, 1 , . - . ,  m - 2. We have 

Rj  : ~ .  - ia. . ,_j_,d, = (s - r - m )a  . . . .  j_, 
i - -0  

o r  

R j :  ~ a , §  . . . .  i-, 
i = l  

f o r j  =O, 1 , . . . , m - 2 .  

By the induction hypothesis there exists a polynomial solution dl, d2," �9 ", d .  of 

this system. In the equation L,,_I all coefficients are divisible by a,§ Put 

do = (a,+l - E7'=1 a,,,+~_.di)/a,+l_,,. Then do, d , . . . ,  d .  satisfy the system (3). [] 
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